An Inverse Method to Estimate the Principal Thermal Conductivities of Composite Material

ثبت نشده
چکیده

This paper reports methodology for simultaneous estimation of principal thermal conductivity of a composite made of aluminium core with aluminium face sheet bonded by using an adhesive layer, using inverse method. The direct problem consists of a three dimensional heat conduction equation in an orthotropic composite medium. The direct problem is solved by using fluent to estimate the temperature distribution on the test sample by varying the thermal conductivity at steady state condition. An artificial neural network is used as an inverse tool to retrieve the thermal conductivity. Sixty sample data temperature values are used to train a neural network by randomly varying the thermal conductivity within a range of 0.5 x, ky z independence study has been carried out to find the number of neurons required to train the network based on the mean square error and regression values. The methodology is demonstrated by retrieving thermal conductivity from the trained network by giving a temperature data that were not used for the training. The retrieved values of thermal conductivities from the trained network were found to deviate to a maximum of ±15% from the actual values. Keywords— Composite material, Inverse heat transfer, Artificial neural network.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Induced Stress Field in Cracked Composites by Heat Flow

A multiscale (micro-macro) approach is proposed for the establishment of the full thermal and induced stress fields in cracked composites that are subjected to heat flow. Both the temperature and stresses distributions are determined by the solution of a boundary value problem with one-way coupling. In the micro level and for combined thermomechanical loading, a micromechanical analysis is empl...

متن کامل

Fatigue Life Assessment of Composite Airplane Wing Subjected to Variable Mechanical and Thermal Loads

The purpose of this paper is to estimate the fatigue life of an airplane wing with laminated composite skin, subjected to variable mechanical and thermal loads. To achieve this aim,at first, the three-dimensional model of airplane wing was drawn in CATIA software. Then, by transferring the model to the ABAQUS software, the finite element model of the wing wascreated. H...

متن کامل

Effective thermal conductivity of composite: Numerical and experimental study

In this paper, thermal properties of composites are investigated numerically and experimentally. In the numerical study, finiteelements method is used to modelize heat transfer and to calculate the Effective Thermal Conductivity (ETC) of the composite for three elementary cells, such as simple cubic (SC), body centered cubic (BCC) and face centered cubic (FCC). The effect of the filler concentr...

متن کامل

Optimization of thermal curing cycle for a large epoxy model

Heat generation in an exothermic reaction during the curing process and low thermal conductivity of the epoxy resin produces high peak temperature and temperature gradients which result in internal and residual stresses, especially in large epoxy samples. In this paper, an optimization algorithm was developed and applied to predict the thermal cure cycle to minimize the temperature peak and the...

متن کامل

Transient Two-Dimensional (r-z) Cyclic Charging/Discharging Analysis of Space Thermal Energy Storage Systems (RESEARCH NOTE)

A two-dimensional transient axi-symmetric model was developed to study the effects of various thermal and geometric parameters on cyclic heating and cooling modes of a phase-change thermal energy storage system. The high-temperature thermal energy storage device utilizes LiH for heat sink applications to store the waste heat generated during power-burst periods. The stored heat is then discharg...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015